Preliminary communication

Synthesis and the structural analysis of 1,2,3,4-tetra-O-acetyl-5-deoxy-5-C-[(R,S)-methoxyphosphinyl]- α,β -D-xylopyranoses

HIROSHI YAMAMOTO, TADASHI HANAYA, SABURO INOKAWA*,

Department of Chemistry, Okayama University, Okayama 700 (Japan)

MITSUJI YAMASHITA,

Department of Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432 (Japan)

MARGARET-ANN ARMOUR, and THOMAS T. NAKASHIMA

Department of Chemistry, The University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)

(Received February 16th, 1984; accepted for publication, February 27th, 1984)

Various sugar analogs possessing a phosphorus atom in the hemiacetal ring have been prepared 1⁻⁻³, because of the interest in their physicochemical properties and also the potential utility of their biological activity. Compared with a large number of the analogs having an alkyl- or aryl-phosphinyl group in the ring, such as 5-deoxy-5-C-(ethylphosphinyl)-D-glucopyranoses 4 and 4-deoxy-4-C-(ethylphosphinyl)-D-ribopyranoses 5, only two derivatives containing a hydroxyphosphinyl group therein have been reported, namely, 4-deoxy-4-C-(hydroxyphosphinyl)-3-O-methyl-D-xylopyranose 6,7 and 4-deoxy-4-C-(hydroxyphosphinyl)-D-ribopyranose 8. We now report the synthesis of the first, unsubstituted 4-deoxy-4-C-(hydroxyphosphinyl)-D-xylopyranose (6), and the n.m.r.-spectral analysis of its four diastereoisomeric derivatives (7a–d), which provides an effective way for establishing the structures of 5-deoxy-5-C-(hydroxyphosphinyl)pyranoses.

The Michaelis—Arbuzov reaction of 3-O-acetyl-5-deoxy-5-iodo-1,2-O-isopropyl-idene-α-D-xylopyranose (1) with triethyl phosphite afforded the 5-C-(diethoxyphosphinyl) derivative (2; 87% yield), which was reduced with sodium dihydrobis(2-methoxyethoxy)-aluminate to give the 5-C-phosphino compound (3). This was either oxidized with hydrogen peroxide to the 5-C-phosphinyl derivative 4, prior to acid-catalyzed ring-enlargement, or immediately hydrolyzed with 1:1 0.5M sulfuric acid—2-propanol for 1 h at 100° under nitrogen, followed by the usual work-up⁷; however, the latter method provided a better yield of the 5-deoxy-5-C-phosphinyl-D-xylopyranose 5. Oxidation of 5 with 3% hydrogen peroxide overnight afforded the 5-C-(hydroxyphosphinyl) compound 6 as a colorless solid in 82% overall yield from 2.

The unambiguous structural assignment of 6 was made by converting it into the 5-C-(methoxyphosphinyl) tetraacetates 7 by treatment with ethereal diazomethane in 1:1

^{*}To whom correspondence should be addressed.

dimethyl sulfoxide-methanol, and then acetic anhydride-pyridine. Purification of the crude mixture by column chromatography on silica gel using ethyl acetate-hexane as the eluant gave three diastereoisomers: 7a (colorless amorphous solid; 5.0% overall yield from 2), 7b (colorless needles, m.p. 183°; 6.4%), and 7c (colorless prisms, m.p. 151°; 6.8%) as pure components, besides another isomer 7d (colorless syrup; 2.3%) contaminated by a minor proportion of inseparable 7c. The molecular composition of these compounds was confirmed by the e.i., high-resolution, mass spectra, all of which clearly gave the (M + 1) ions at m/z 381 (2.3-3.4%) corresponding to C₁₄H₂₂O₁₀P. The precise configurations and the ${}^4C_1(D)$ conformation of 7a-d were established by complete analysis of their 400-MHz, ¹H-n.m.r. spectra; see the assignments of all signals, summarized in Table I. It should be noted that, as was observed for 7a and 7b, a slight, downfield shift (0.2-0.4 p.p.m.) of the H-2 and H-4 signals (and an upfield shift of the P-OMe signal) indicated the axial orientation [(R)] of the ring P=O group, whereas the anomeric orientation at C-1 is readily perceived by considering the values of H-1, H-3, and H-5a, and the magnitudes of $J_{1,2}$, $J_{1,P}$, and $J_{1.5e}$. This method would also be applicable to the determination of the configuration of C-5 of hexopyranoses, even those having such a ring-phosphinyl group.

The present work thus demonstrates an effective way for preparation and structural analysis of 5-deoxy-5-C-(hydroxyphosphinyl)-D-xylopyranose.

[ABLE I

 $400\text{-}MHz, \ ^1\text{H-N.M.R. PARAMETERS FOR 5-DEOXY-5-C-(METHOXYPHOSPHINYL)-D-XYLOPYRANOSES IN CDCI,} \ ^{d}$

Compounds	Chemi	Chemical shifts (8)	(8)										
	H-1	Н-2	Н-3	H-4	H-5e	H-5a	Ac0-1,	AcO-1,2,3,4b		ŽŲ.	MeO-P		
7a	5.64	5.48	5.49	5.32	2.47	2.20	2.20,	1			13		
7b	5.35	5.54	5.24	5.32	2.61	2.03	2.16,			•	<u>چ</u>		
7c	5.53	5.32	5.24	5.09	2.57	2.05	2.14,	2.06, 2	2.04, 2.	2.02 3.9	3.97		
7d	5.71	5.13	5.46	5.05	2.54	2.34	2.26,				93		
	Coupli	ng const	Coupling constants (Hz)										
	J _{1,2}	$J_{i,P}$	J _{1,5} e	J _{2,3}	$J_{2,\mathbf{p}}$	m 3,4	J4,5e	J4,52	J,P	J _{sa,se}	J _{se,P}	J _{sa,P}	^J РОМе
7a	2.3	14.4	2.2	10.0	0	10.0	4.6	12.0	1.5	-14.2	.,	8.4	11.3
7.6	10.5	5.0	0	9.3	3.2	9.7	4.5	11.2	0	-14.7		9.5	11.5
7c	10.2	3.2	0	10.0	1.8	10.0	4.5	11.5	1.2	-14.8	23.5	9.5	10.5
7d	3.0	15.3	2.3	10.6	0	10.3	8.4	11.7	1.3	-14.8	•	12.3	10.5

some of its parameters being obtained by computer-assisted analysis (see ref. 10). b Acetoxyl assignments may have to be interchanged. ^a The assignments of all signals were made by employing a first-order analysis with the aid of a decoupling technique, except for 7a,

REFERENCES

- 1 For a review, see H. Yamamoto and S. Inokawa, Adv. Carbohydr. Chem. Biochem., 42 (1984) in press.
- 2 K. Seo, Carbohydr. Res., 119 (1983) 101–107; 122 (1983) 81–85; 123 (1983) 201–207; 124 (1983) 156–160.
- 3 M. Yamashita, M. Yamada, K. Tsunekawa, T. Oshikawa, K. Seo, and S. Inokawa, Carbohydr. Res., 121 (1983) C4-C5; 122 (1983) C1-C3.
- 4 H. Yamamoto, K. Yamamoto, S. Inokawa, M. Yamashita, M.-A. Armour, and T. T. Nakashima, J. Org. Chem., 48 (1983) 435-440.
- 5 H. Yamamoto, Y. Nakamura, S. Inokawa, M. Yamashita, M.-A. Armour, and T. T. Nakashima, Carbohydr. Res.. 118 (1983) C7-C9; J. Org. Chem., 49 (1984) in press.
- 6 R. L. Whistler and C.-C. Wang, J. Org. Chem., 33 (1968) 4455-4458.
- 7 H. Yamamoto, T. Hanaya, S. Inokawa, K. Seo, M.-A. Armour, and T. T. Nakashima, Carbohydr. Res., 114 (1983) 83-93; H. Yamamoto, T. Hanaya, S. Inokawa, and M.-A. Armour, ibid., 124 (1983) 195-200.
- 8 H. Yamamoto, M. Harada, S. Inokawa, K. Seo, M.-A. Armour, and T. T. Nakashima, Carbohydr. Res., 127 (1984) 35-42.
- 9 K. Seo and S. Inokawa, Bull. Chem. Soc. Jpn., 48 (1975) 1237-1239.
- 10 K. Satake, Y. Hara, H. Murata, and H. Yamamoto, Kagaku (Kyoto), 39 (1984) (3) A1-A8.